Information for Health Care Providers - Managing Contacts of Patients with Invasive Meningococcal Disease

How is meningococcus spread?
Meningococcus is spread through direct exposure to secretions (sharing saliva or sharing nasal secretions) or very close personal contact, such as that occurring in households, daycare centers, jails, or barracks. It is not spread through casual contact such as that occurring in workplaces or classrooms.

What is the clinical manifestation of invasive meningococcal disease?
Invasive infection usually results in meningococcemia, meningitis, or both. Onset often is abrupt in meningococcemia, with fever, chills, malaise, prostration, and a rash that initially can be macular, maculopapular, or petechial. The progression of disease often is rapid. In fulminant cases (Waterhouse-Friderichsen syndrome), purpura, disseminated intravascular coagulation, shock, coma, and death can ensue despite appropriate therapy. Less common manifestations include pneumonia, febrile occult bacteremia, conjunctivitis, and chronic meningococcemia.

The clinical manifestations of meningococcal meningitis are indistinguishable from clinical manifestation of acute meningitis caused by *Streptococcus pneumoniae* or other meningeal pathogens. The case fatality rate for meningococcal disease in all ages remains at 10%; mortality in adolescents approaches 25%. Invasive meningococcal infections can be complicated by arthritis, myocarditis, pericarditis, and endophthalmitis. Sequelae associated with meningococcal disease occur in 11% to 19% of patients and include hearing loss, neurologic disability, digit or limb amputations, and skin scarring.

What are the diagnostic tests for meningococcal infection?
Cultures of *Neisseria meningitidis* from a normally sterile site such as blood, cerebrospinal fluid (CSF), synovial, pleural, or pericardial fluid, or skin scrapings or purpuric lesions are indicated for patients with suspected invasive meningococcal disease to confirm the diagnosis. The detection of *N. meningitides* specific nucleic acid in a specimen obtained from a normally sterile body site using a validated polymerase chain reaction (PCR) assay or isolation of *N. meningitides* from a normally sterile body site also confirms the diagnosis. The presence of gram-negative diplococci (detected by Gram stain) from a petechiae or purpuric scraping, or a normally sterile site such as blood or CSF does not confirm the presence of *N. meningitidis* in the site. Bacterial antigen detection in CSF by latex agglutination or formalin fixed tissue by immunohistochemistry (IHC) supports the diagnosis of a probable case.

Who are most at-risk for developing invasive meningococcal disease?
The disease most often occurs in children younger than 5 years of age with the peak attack rate occurring in children younger than 1 year of age. Another peak occurs in adolescents 15 to 18 years of age. People who are most at-risk for developing invasive meningococcal disease are patients with terminal common complement deficiency (C5-C9), C3 or properdin deficiencies, or functional or anatomic asplenia; persons with HIV infection; freshman college students who live in dormitories; household contacts of an infected person; person with antecedent upper respiratory tract infection; people who live in a crowded household; people who are both active and passive smoking; African Americans, persons of low socioeconomic status; and during outbreaks, bar or night club patronage and alcohol use. Microbiologists who are routinely exposed to isolates of *N meningitidis*; military recruits; and persons who travel to or reside in countries in which *N meningitidis* is hyperendemic or epidemic, particularly if contact with the local population will be prolonged are also at risk for the disease.
How should I handle an individual who thinks they have been exposed to meningococcal meningitis?

A close contact of an infected patient should receive the recommended chemoprophylaxis. Only persons with close contact to a confirmed case of invasive meningococcal disease are at risk, such as:

- Household contact, especially younger than two years
- Child care, or preschool contact during the previous seven days before onset of illness
- Direct exposure to index patients secretions through kissing or sharing toothbrushes or eating utensils, markers of close social contact at any time during seven days before onset of illness
- Mouth-to-mouth resuscitation, unprotected contact during endotracheal intubation during the seven days before onset of illness
- Frequently sleeps or eats in the same dwelling as index patient during the seven days before the onset of illness
- Passengers seated directly next to the index case during airline flights lasting more than eight hours

Chemoprophylaxis is not recommended for:

- Casual contact with no history of direct exposure to the index patient’s oral secretions, e.g. school or work
- Indirect contact: only contact is with a high-risk contact, no direct contact with the index patient
- Health care personnel without direct exposure to patient’s oral secretions

What medications are recommended for prophylaxis of contacts to a case of meningococcal meningitis?

<table>
<thead>
<tr>
<th></th>
<th>Dose</th>
<th>Duration</th>
<th>Efficacy, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infants, children and adults</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifampin (age &lt; 1 mo)</td>
<td>5 mg/kg body weight orally, every 12 hrs</td>
<td>2 days</td>
<td>90-95</td>
</tr>
<tr>
<td>Rifampin (age ≥ 1 mo)</td>
<td>10 mg/kg body weight (maximum, 600 mg) orally every 12 hrs</td>
<td>2 days</td>
<td>90-95</td>
</tr>
<tr>
<td>Ceftriaxone (age &lt; 15 yrs)</td>
<td>125 mg intramuscularly</td>
<td>Single dose</td>
<td>90-95</td>
</tr>
<tr>
<td>Ceftriaxone (age ≥ 15 yrs)</td>
<td>250 mg intramuscularly</td>
<td>Single dose</td>
<td>90-95</td>
</tr>
<tr>
<td>Ciprofloxacin* (age ≥ 1 month)</td>
<td>20 mg/kg (maximum 500mg), orally</td>
<td>Single dose</td>
<td>90-95</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>10 mg/kg (maximum 500 mg)</td>
<td>Single dose</td>
<td>90-95</td>
</tr>
</tbody>
</table>

Cautions:

- Can interfere with efficacy of oral contraceptive and some seizure and anticoagulant medications; may stain soft contact lenses. **Not recommended for pregnant women.**
- To decrease pain at injection site, dilute with 1% lidocaine
- **Not recommended routinely for people < 18 years of age or pregnant women; use may be justified after assessment of risks and benefits for the individual patient**
- **Not recommended routinely. Equivalent to rifampin for eradication of N. meningitides from nasopharynx in one study.**

How are outbreaks/clusters of meningococcal infection handled?

In the state of West Virginia, local health departments practice readiness for meningococcal outbreaks on an ongoing basis by:

- Assuring that all meningococcal isolates and specimens are referred to the Office of Laboratory Services for serogrouping (to determine if circulating strains are covered by the meningococcal vaccine);
- Assuring that all high-risk contacts are appropriately offered prophylaxis; and
- Assuring that providers are educated to report suspect and confirmed cases of invasive meningococcal disease promptly.

Guidelines for outbreak management have been developed by the Centers for Disease Control and Prevention (http://www.cdc.gov/meningococcal/outbreaks/index.html); however, each situation is different. Consult your local health department if a cluster or outbreak is suspected.

Are there vaccines for meningococcus?

There are several serogroups of *N meningitides*, five of which are common in the U.S. There are three kinds of meningococcal vaccines available in the U.S.:

1. Meningococcal conjugate vaccines (Menactra®, MenHibrix®, Menveo®)
2. Meningococcal polysaccharide vaccine (Menomune®)
3. Serogroup B meningococcal vaccines (Bexsero®, Trumenba®)

The table below indicates which vaccines cover which meningococcal serogroups:

<table>
<thead>
<tr>
<th>Trade Name</th>
<th>Abbreviation</th>
<th>Type of Vaccine</th>
<th>Meningococcal Serogroups Covered</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bexsero®</td>
<td>MenB</td>
<td>Recombinant</td>
<td>B</td>
<td>2 doses, 10-25 years of age</td>
</tr>
<tr>
<td>Trumenba®</td>
<td>MenB</td>
<td>Recombinant</td>
<td>B</td>
<td>3 doses, 10-25 years of age</td>
</tr>
<tr>
<td>Menactra®</td>
<td>MCV4</td>
<td>Conjugate</td>
<td>A, C, W135, Y</td>
<td>9 months-55 years of age</td>
</tr>
<tr>
<td>MenHibrix®</td>
<td>HibMenCY-TT</td>
<td>Conjugate</td>
<td>C, Y, (and H. influenza type b)</td>
<td></td>
</tr>
<tr>
<td>Menveo®</td>
<td>MCV4</td>
<td>Conjugate</td>
<td>A, C, W135, Y</td>
<td>2-55 years of age</td>
</tr>
<tr>
<td>Menomune®</td>
<td>MPSV4</td>
<td>Polysaccharide</td>
<td>A, C, W135, Y</td>
<td></td>
</tr>
</tbody>
</table>

For the vaccination schedule and specific vaccine recommendations, please see http://www.cdc.gov/vaccines/schedules/hcp/imz/child-adolescent.html

How can I educate my patients about meningococcal infections?

Information about meningococcal disease is available from your local health department or on the West Virginia Department of Health and Human Resources website at: http://www.dhhr.wv.gov/oeps/disease/IBD_VPD/VPD/Pages/Meningococcal.aspx

References: